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A numerical method for a nonlinear inversion problem for the 2D wave equation
with a potential is discussed. In order to avoid the ill-posedness, we substitute a
coupled system of one-way wave equations for the original wave equation. An iter-
ative algorithm is constructed to improve the accuracy of the inversion. Numerical
experiments are performed on several examples to examine the effectiveness of this
method. (© 1998 Academic Press
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1. INTRODUCTION

In this paper, we describe a numerical nonlinear inversion method for recovering
potentialv(x, z) in the two-dimensional plasma wave equation from the boundary respc
of the half-planez > 0 excited by an impulsive line source. That is, we consider
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and seek to determine the unknown potent{al z) from the responsie(t, x). This problem
has several applications. We refer readers to the discussion in [22] for further referen
What motivates us to study this problem is its application to petroleum prospecting
reconstructing an acoustic medium with density and wave speed from surface measuren
of the displacement response to a line source. In one dimension, the corresponding in\
problem is well-posed and has been investigated both theoretically and numerically |
[17,12, 3, 4,11, 25, 19]). But in higher dimensions, like inverse problems of other mul
dimensional hyperbolic equations, very little is known. The main difficulties lie in th
nonlinearity and ill-posedness.

Due to the stimulation of applications in many fields, such as seismic prospecting, med
imaging, nondestructive testing, radar detection, etc., inverse problems in multidimensic
wave equations have attracted remarkable research interests in past decades. Various
ods based on linearization or optimization (for example, [18, 6]) are discussed and de
oped; however, good directly nonlinear inversion methods are still under development.
refer readers to the survey papers[1, 10]. In[21], Yagle and Levy suggested a layer-strip
method for the inverse problem (1.1) and in [22] Yagle and Raadhakrishnan presentec
results of some numerical experiments. Their main idea is to regularize the ill-posed pr
lem by cutting the lateral wave numbers. In contrast, our approach for regularizing
problem is based on the wave splitting method developed by Zhang in [23, 24, 27].
splitting the wave field into upgoing wavés(t, x, z) and downgoing wave® (t, X, z)
which are governed by pseudo-differential equations, the nonradiative wave, which cal
the ill-posedness, is naturally regularized. As proved in [23], the derived one-way we
equations are well-posed when the reference spatial direction is treated as the evoll
direction. Therefore, using the relation on the characteristic

U(z+,X,2) = —:—zlv(x, 2), (1.2)

derived by causalityy (X, z) can be stably solved layer by layer as a nonlinear initial valu
problem in thez direction.

Since the early seventies, one-way wave equations have been applied to geophy
exploration. Usually, one considers the response as the primary reflection and uses th
coupled upgoing one-way wave equation to extrapolate the upgoing wave field from
response recorded on the surface, downward towards the interior of the earth. Addition
this extrapolation picks out the upgoing wave at each point at the arrival time of the dov
going wave to image the underground structure. Such a technique is called migration ([1
In migration the multireflection is considered to be noise. The main difference between
inversion method discussed in this paper and the migration method is that all reflections
only the primary reflection, but also the multiple reflections, are taken into considerati
So migration is regarded as a linearized inversion, which can also be considered as the
order approximation of the full nonlinear inversion developed in this paper.

This paper can be regarded as the continuation of the work in [13, 28]. Some modificati
are made to the derived one-way wave equations and their initial and boundary conditi
high-order approximations are used in the numerical inversion and an iterative invers
algorithm is constructed. With these modifications, the numerical results are remarke
improved.

This paper is organized as follows. In Section 2, we introduce the wave-splitting te
nigue and derive the one-way wave equations and their approximations for the propage
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operator. In Section 3, we discuss the inverse problem for the system of coupled one
wave equations and their initial and boundary conditions. Unlike the original inverse pi
lem, it is well-posed and can be solved by the layer stripping method. In Section 4,
introduce the finite difference schemes and the numerical implementation for the inv
problem discussed in Section 3. In Section 5, we construct an iterative algorithm to imp
the inversion accuracy. Finally, we present several numerical examples in Section 6.

2. SPLITTING OF WAVE FIELDS

Splitting of wave fields is not new, many researchers have studied it with various
proaches. Westonrt al. worked on splitting and derived a coupled differential-integre
system [20]. Fishman studied splitting by the Weyl pseudo-differential operator [9]. (
approach to wave splitting is close to the method proposed by Engquist and Majda ir
which was originally used to deal with the absorbing boundary conditions.

First, we consider the two-dimensional propagation operator

799 2.1)

with dispersion relation

ik, = rikey/1 — k2/K2. (2.2)

We rewrite the operator (2.1) as

92 92 92 ] d
— - == (A+=)[A-—=). 2.3
a2 9x2  9z2 ( + 82)( 82) (2:3)

Here,A is called a square-root operator and can be regarded as a pseudo-differential op

with the symbol
A =ikiy/1—K2/K2. (2.4)

We seek an approximation operatoy to A. For the sake of simplicity and clearness, wi
ignore the rigorous discussion of pseudo-differential operators in the following deduc
and will come back to explain the meaning of the operator

In Appendix A, we prove the following proposition.

PropPosITIONL. For all the complex numbesé¢ (—oo, —1) U (1, +00), the following
integral equality

g2 1 Ji-s
_ g2 _1_ 2_
1-g2=1 T (2.5)

is valid.

Using Eq. (2.5), the symbal can be expressed as

i 1 k2 k.
A:ikt—l—/ V1-s2—* ds when|—
T ) ke k

ki —s t

<1 (2.6)
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For realr, define

I(r)::r}[l—\/l—rz]. (2.7)

Then by the definition (2.4) of, the functionl (r) and symbobl have the relation

A = ike — iky '(E) (2.8)

By discretizing (2.5), it is easy to see that wheh< 1, | (r) can be approximated by the
rational functionl,(r),

n

an,r
la(r) = ’ 2.9
n(r) ;1—amr’ (2.9)

where

1 Fi1
= sit | —— 2.10
&l =0T <n+1>’ (2.10)

4

=cos| —— |, 2.11
cns = cos{ 7 ) (211)

and the approximation order is
L(r) — In(r) = O, (2.12)

See [23] for a rigorous proof. Combining (2.8) and (2.9), we get the approximations to
symboli,

e k 2
An = ike — iky I”(k) iky — ik Zkt Olnlkx (2.13)
Using the correspondence
d d
ik —, ik — 2.14
1Kt <> ot IKyx <> ax’ ( )

returning to the-x domain, and using (2.6), the square-root operat@an be written as

d
A=_—-R 2.15
P (2.15)

wherel is the identity operatoR is a pseudo-differential operator defined as

1
R[p(t, X, 2)] := % /l\/l— s2q(s; t, X, 2) ds, (2.16)

and the auxiliary function(s; t, X, z) satisfies

0 0 92
(5 — 58_) (s;t,Xx,2) = P p(t, X, 2). (2.17)
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If we defineU andD as

0 d
=|——R4+ — 2.1
U {m +82} 0. (2.18)
0 0
Di=|——-R-— 2.19
{at az} b, (2.19)

2 2 2
(3_ L 37) Pt X, 2) = 0 (2.20)

is replaced by the system of one-way wave equations,

1 1
(E_E)U__/ \/1_32qU(S;t,X,Z)dS=O,
T Ja

ot 0z
a0 1/t
-+ = D——/ V1-s2qp(s;t,x,z2)ds=0, (2.21)
ot az 7)1
3 U-D
2P~ 2

whereqy andqp satisfy

d 3\ [/ qus:t,x, 2 32 (U(t,x,2)
The planar waved (t — (@z+ Bx)) and their superpositions are solutions of the wav
equation (2.20) iff is twice differentiable, and:® + g% =1. It is easy to verify that for
all @ <0 (« > 0), the planar waved (t — (ez+ 8x)) and their superpositions satisfy the
one-way wave equation fdJ (D) in (2.21). In geophysical applications, the variabls
used to represent the depth under the surface of the earth, so we debighatez) the
upgoing wave andD(t, x, z) the downgoing wave.

One question naturally arises for the splitting wave equation system (2.21): Inwhat s
does it simulate the original equation (2.20)? First, such wave splitting is accurate for
one-dimensional case ([25]). Second, in [27], the author proved that the coupled sy
(2.21) and the wave equation (2.20) are equivalent in the sense of high-frequency ap
imation (geometrical optic approximation). Both have the same eikonal equation anc
same first transport equation; that is, system (2.21) preserves the kinetic and dynamic
erties of the original wave equation. Third, due to Eq. (2.6), such wave splitting is o
valid for the radiative wave, whetk, /k;| < 1. For reaky, k; and|ky/k:| > 1, 2 is taken to
be zero (see Remark 2). We remind readers that it is the nonradiative(ikgyk; | > 1)
which causes the ill-posedness in solving the spatial initial problem. Therefore by refor
lating the wave equation, we have actually regularized the problem.

Remark 1. In [27], the author obtained a general approximate splitting formulation f

1 92 92 92
(W, 2202 9xE @) p=0. (2.23)



490 ZHANG AND ZHANG

as

1
(18_8)U — 18{1/ V1-52q(s;t, X, z)ds]

cot 0z

[D+U +a5Lt,x, 2 +a3(Lit,x, 2] =

(EEJFE) ___[ /\/——squ(stxz)ds}

I\)‘N

(2.24)

cot 0z coat

[D+U +a5 Lt x, 2+ 3Lt x, 2] =

NIy

whereq( andqg satisfy

32 L 0\? a5 (s; t, X, 2) 3 \2/U@, x 2
(W -S (C&) )(qg(s;t, X, z)) N (C&> (D(t,x,z)) ' (2.25)
The above discussion is also valid for splitting (2.24) even wtlen z) is piecewisely
smooth.
Remark 2. If we define

. 1 /—_ 2
[(r):=lim Re(“rgI / 1 S_ ds),
e—0 T _11—(r +ei)s

by Proposition 1, we have

K, ik /1—
I — 3,
— ik, — |k|( )— ! K

ki 0.

Ky
ke

ke
ki

<1,

(2.26)
> 1.

Remark 3. In[29], we proved that ip(t, X, 2) is a solution of wave equation (2.20) with
L, integrable initial time conditions, then the support of Fourier transform for its respon
P(k:, ky, z=0) must be contained i = {(k;, ky) : |ki| > |k|}; i.€., the response at=0
does not contain the nonradiative part. But for the variable coefficient wave equation (2.
or (1.1), such a conclusion is no longer true, and thus the splitting is incomplete.

In numerical computations, itis convenient to use the approximate splitting system inst
of system (2.21). From the approximate symbgpHdefined by (2.13), we obtain

3 9 &
(at - 82>U _ZaanU(an,“taXa Z) =Oa

0 d
<8t + 82) Zanl%(am,t X,2) = (2.27)

U-D
0z 2

Unlike the original equation (2.20), ttedirection initial value problem for (2.27) is well-
posed; see [23] or [29].
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Remark 4. The first equation fotJ in (2.27) has been used in migration (see [24])
The special cases far=1 andn =2 are classical 15([5]) and 40 ([15] or [2]) migra-
tion equations which are widely used in seismic exploration. In general, one-way W
equations (2.27) aré(n) degree equations, whetkén) is an increasing function af and
nIi_)mOQ d(n)=90.

Remark 5. The wave splitting technique discussed here can be generalized to the t
spatial dimension wave operator. The symbol for the 3D square-root operator is

»o=ikey/1— (K2 +K2) /K2, (2.28)

Using (2.5)

S e P

= d 2.29
T 1 1—£s 4 ,11—%-232 S ( )

A can be expressed as

K24+ k2 1 J1I-—s2
A=ik[1- = y/ ds|, kZ+Kk2<Kk? 2.30
( o Lae— e ) sl 230

and the the approximate symbalsare

o = ik 1—zn: 8o (K + k)
T R - +K)

. (2.31)

From (2.30) and (2.31), itis easy to derive the one-way wave equations and their approxi
equations for the 3D case.

3. INVERSE PROBLEM FOR THE SYSTEM OF COUPLED
ONE-WAY WAVE EQUATIONS

Applying the square-root operator introduced in Section 2, the inverse problem (1.1)
be reformulated as

1 [t
(E_E)U_—/ V1—-s2qu(s;t,x,20ds+vp=0,
)1

ot o0z

a9 1/t

— + — D——/ V1—-s2qgp(s;t,x,z)ds+vp=0,

at 0z T )1
0 U-D
_p= 3.1
a7 P 5 (3.1)

E_Si Qu(sit.x.2) _ 9 (Ut.x.2
at ax/\ap(s:t,x, 20/~ ax2\ D(,%x,2) )’
U, x,0) = —D(t, x,0) = h(t, x),

p(t, x, 0) = 4(1).
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System (3.1) is nonlinear and coupled because of thedprim this system, all the multiple
reflections are taken into consideration. When the respotisg) is small,D, U, p, andv
are also small. If we drop the high order tenm, system (3.1) is reduced to the linear and
decoupled system (2.21). The first equation of (2.21) is the basic upcoming one-way w
equation, which is used in migration. So migration can be considered as the linearized
order approximation of the full nonlinear inverse problem discussed in this section.
From propagation theory, thisingularity will be propagated along the surface z
which is the envelope of the characteristic cones with vertices or-tirds. Singularity
propagation analysis for (3.1) (see [13] or [7]) yields the valuds ehdD ont =z,

U(z+,X,2) = —%v(x, 2), (3.2)
Qu(s; z+,%,2) = 0, (3.3)
and
z 82
D(z+,%,2) = /0 [W — (X, 5)] g(x, &) dé — h(0+, x), (3.4)
U (z+.X,2) =0, (3.5)
where

1 z
0

Remark 1. For the original inverse problem (1.1), we can also obtain the followin
conditions forp by singularity propagation analysis, which were used to construct the lay
stripping algorithm in [22],

(8_,_3) p(t = 7+, X z)=—v(x’z)

ot 9z o 2

<3 - 3) pit = 2+, z>=/z{3—2—v<x s>]g<x £)dé — h(O+, X).
at a9z o o |ot2 ’ ’ ’

Similar to (2.27), we use the approximate coupled system in numerical computations,

9 9 :

9 9 d
(ﬁ * a_z) D=3 auudo(en) + 1P =0,

- (3.6)
9 U-D

EP= 5
o 3\ (Qulonit, X, 2) _Zi u(,x, 2
ot~ “™ox)\apl@nit.x.2) ~ 92\ Dt,x,2 )’

In order to solve (3.6), initial and boundary conditions must be added. According to t
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original problem (1.1), at the surfage=0 fort > 0,

U(t, x,0) = h(t, x),
D(t, x,0) = —h(t,x), fort >0, 3.7)
p(t, x,0) =0.

Alongt =z, we use the results of singularity propagation analysi$X@andqp

z 82
D(z,x,2) = / [ﬁ —v(X, é)} g(x, &) d& — h(0+, x),
0 (3.8)

Op(ani,t,x,20=0, I =1,....n.

For the sake of stability and closeness, some kind of large-time conditions must be pror
for U andqy, for example, for largd

U, x,2) =0,
(3.9)
Quan; T,x,20=0, I=1,...,n
Finally, we use the following relationship to reconstruct the potentig) z):
v(X,2) = -2U(z X, 2). (3.10)

The inverse problem for the one-way wave equation system (3.6)—(3.10) can be solv
the domain2 = {(t, x, z) : xe R, t > z> 0} by the well-known layer-stripping algorithm.
We discuss its numerical implementation in the next section.

Remark 2. Among all the conditions proposed above, the large-time conditions (3.9)
not seem to be very reasonable. Whex, z) is compactly supported, the upgoing wave
satisfies

lim U(t, x,2) =0. (3.12)
t—o0

The first condition in (3.9) can be regarded as an approximation to (3.11) Wherery
large. In practice] cannot be very large; otherwise, a long record of the respufisg) is
required and the computational effort increases. Numerical tests tell us that the large:
conditions affect the accuracy of inversion and need to be further studied. In nume
inversions, we use the approximate conditions instead of (3.9):

U (T’ X, Z) = _D(T’ X, Z)’
(3.12)
qU(anJ;TaX’ Z) - _qD(an,|;T7X7 Z)a I - 17"'7n-

From conditions (3.7), (3.12) is valid a&= 0 and can be regarded as approximate conditiol
whenz > 0. From numerical experiments, it seems that such conditions work well even w
T is not very large (see the numerical examples in Section 6).

Remark 3. The inversion method discussed in this paper can be easily generalize
the 3D case; see Remark 5 in Section 2.
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Remark 4. For the inverse acoustical wave problem with variable velocity

1 92 92 52
cx 2202 a2 Pt xD =0 2>0,t>0,

0
p@0, x,z) = 3 p(0,x,z) =0, z> 0, (3.13)
p(t, X, 0) = 4(t), t>0,

0
—p(t, x,0) = h(t,x), t>0;
57 P( ) = h(t, %)

a similar inversion method was suggested in [26].

4. NUMERICAL IMPLEMENTATION OF THE INVERSE PROBLEM FOR THE
SYSTEM OF COUPLED ONE-WAY WAVE EQUATIONS

In this section we describe the difference scheme for the 2D layer-stripping algoritl
for the solution of the inverse problem (3.6)—(3.8), (3.12), and (3.10).

Let Q be the domair2 ={(t, X, 2) |t > z}, and cover2 by the grid{(t;, Xj, z) | ti =
i- At Xj=]-AX, zx=k- Az, At=Az= A, on grid pointsj + k =even numbgt shown
in Fig. 1. Denotingfji’k = f(t, xj, z), and discretizing equations (3.6) along the charac
teristic directiont +z=c;,t — z=c,, we obtain

j i
Uk —Ul 1k

n
X - Z 8n1 (Qu (@) _1ok:1/2 + Vs1/2P1oki2 = 0. (41)

=1
D!, — D/
ik i-1k-1

n
N - Z a1 (b (@n))! _1/2k 12 + Yk 1/2P_1/2k 12 =0, (4.2)

I=1

(i+1,k-1) (541, k+1)

(i-1,k-1) (i—1,k+1)

> 2

FIG. 1. The grid used in numerical computation.
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i j
Pk — Pik-1

1. . , ,
A Z(Uij,k—l +U! — D/, ;- D). 4.3)

(Qu () ))ij+3/2,k+1/2 — (Qu (o) ))ijfl/z,k+l/2
2A

Ax

Tl Ay (QU (an, ))ij+3/2,k+1/2 + (Qu (an, ))ijfl/z,kJrl/Z)

_ A
T 4AX2

(Ul + Ul + Ul + Ul i) (4.4)

(o () ))ijfl/z,kfl/z — (dp (o)) ))ij75/2,k71/2

2A
Ax i i
—Qp) AAX (QD(an,l))ifl/zqkfl/z + (QD(an,l))i75/2,k71/2)
= Ai(DJ'+D-1 +D! L+ D5 1) (4.5)
- AAX2 ik i—1,k—1 i—2,k i—-3,k-1)> .
where
Ay f(X) = f(X+ AX) — f(X — AX), (4.6)
AZF(x) = F(X+ AX) = 2f(X) + f (X — AX), 4.7
| i 4ol
U|J<+1/z = 7“12 X, (4.8)
| P+ Pl
piJ,k—l/Z = % (4.9)

The above difference schemes, (4.1)—(4.5), are implicit and have second-order trunc
errors. To simplify the algorithm, we first use the explicit difference schemes for the auxili
functionsqy (on,) andqp (on, ):

QU @) 13/2x:1/2 — @U@ 1/ A -
n |Jr3/2,k+l/22A n i—1/2,k+1/2 — o) 2AXX qu (an,l))ij+3/2,k+1/2
AL j j j
= I U+ Ul + Ul + UL ). (4.10)

(@ (@n))_1/2k-1/2 = @ @) _s/2k12 w Ay
2 "™ 2AX

Op (an,l ))i175/2,k71/2
AZ

= IAx2 (/v + D! 1 1+D/ 5+ D! 34 1) (4.11)

Solving forqy (an, ))i"+1/2,k+1/2, Ao (en,l ))ij_l/z,kﬂ/z from the above equations and inserting



496 ZHANG AND ZHANG

them into (4.1) and (4.2), we get

A? 2 j
(1  4AX2 AX) Uik

AZ ) . AZ ) X . ) )
= (1 + mAx) Ulikr + TN (Uliskor +Ulak) + AZ- v 10012k 12

n

A )

— Az E an | <1 — On)| HAX> (qu (Oln,l))ij+5/2,k_1/2, (4-12)
=1

A? 2 j
<1 YN AX) Di
AZ

A%\ ni 200 j P
= <1 + AAX2 Ax> Di_ikat mAx(Difz,k + D/ 5x1) —AZ: Vk_1/2P—1/2.k—1/2

n A .
+Az- Z an,| (1 +omi— Ax) (Qu @) _s/2k-1/2- (4.13)
I=1

The numerical computation begins at the surfaee0 and advances in the positive
z-direction. At each layez, D andqp are solved fromt =ztot =T with the initial-time
conditions (3.8)J andqy are solved fromt =T to t =z with the large-time conditions
(3.9) or (3.12). The details of the algorithm are as follows:

Stepl.
Whenk = 0:
ComputeU, D, p atk = 0 by conditions (3.7);
Computev) = —2U{
Step2.
Whenk > 0, computdJ, D, qu, qp, p andv at this layer:
a. Prediction
Use first-order scheme

pij,k - pij,k—l _ UiJ,k—l - DiJ,k—l
A 2 ’

(4.14)

to pre—estimatepijﬁk;
Let v|J(_l/2 = vd_l;
ComputeU andqy by (4.12) and (4.4) with conditions (3.9) or (3.12);
ComputeD andqp by (4.13) and (4.5) with conditions (3.8);
b. Correction _ _
Let v = —2Uy i, g2 = (g +00)/2;
Computepi{k by (4.3);
ComputeU andqy by (4.1) and (4.4) with conditions (3.9);
ComputeD andqp by (4.2) and (4.5) with conditions (3.8);
Use the newJ)! to correcty) = —2U)/;
Step3.
Letk=Kk+ 1, repeat step 2 until a predetermined depth
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The above algorithm has second-order accutdcy, andp are solved at integer grid
points(i, k) andgy andgp are solved at half integer grid pointis+ 3, k+ 3).

In the numerical implementation, we find that the above inversion algorithm for 1
one-way wave equations has several advantages. First, the derived coupled one-way
equations have definite physical meanings. Second, fonaaly of the high order approx-
imate equations fay andqp are first-order partial differential equations. This avoids th
difficulty of solving higher order partial differential equations which is required by oth
wave splitting algorithms. Third, all of the equations for the auxiliary functopner, ) and
do (an,1) satisfy the same type of equation and they are fully uncoupled. §pus,gp can
be found by calling the same subroutine with different coefficiernitsnumerical compu-
tations. Fourth, althougly, or qp appears to be a four-dimensional functibnt, x, z), by
careful analysis, only a two-dimensional array is needed, one dimensiarafat another
forl (from 1 ton). Sincen does not exceed 20 in numerical computations, memory storz
is saved.

5. ITERATIVE ALGORITHM

Numerical results illustrate that the potentials reconstructed by solving the inverse p
lem for the system of coupled one-way wave equations do not have enough accuracy. T
due to several reasons. First, the system of coupled one-way wave equations are an a
imation to the original equation in some sense (see discussion in Section 2). Secont
responsd(t, x) used in inversion is not the response of a forward problem for the syst
of coupled one-way wave equations; thus we cannot expect to obtain an accurate potel
fromh by simply solving the coupled system (3.6). Third, the large-time conditions (3.9)
not accurate (see Remark 2 in Section 3). In this section we construct an iterative algor
to improve the inversion accuracy.

For the potentiab(x, z), a response can be obtained by solving the direct problem
the wave equation (1.1),

h(t, x) = (Av)(t, X). (5.1)

Similarly, by solving the direct problem for the system of coupled one-way wave equati
(3.1), another response can be obtained,

hs(t, ) = (Av)(t, X). (5.2)

Generally,4~! is an unbounded operator, but numerical experiments show that the invs
problem for (5.2) is well-posed. Hs(t, x) is known, we can obtain the potential by solving
a well-posed inverse problem,

v(x,2) = (A ths) (x, 2). (5.3)
Since

hs(t, x) = h(t, x) — (h(t, X) — hs(t, X)), (5.4)

hs(t, X) = h(t, x) — (Av — Av)(t, x). (5.5)
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Given an approximate potentialx, z), hs(t, X) can be approximately represented as
hs(t, X) &~ h(t, X) — (Av — Av)(t, X). (5.6)

From the above heuristic discussion, we construct an iterative algorithm as follows:
Stepl. Form =0, Ieth? = h(t, x), wherem is the index of iteration;
Step2. For the known respond#’(t, x), solve the inverse problem for the system of
coupled one-way wave equations (3.6)—(3.8), (3.12), and (3.10),
v"(x,2) = (A7) (x, 2); (5.7)
Step3. Compute the direct problem for the wave equation

hiv L (t, x) = (Av™)(t, X) (5.8)

and the one-way wave equations,

ho*+(t, x) = (Av™)(t, x); (5.9)
Step4. If
e = ||h(t, x) — h{T(t, %] (5.10)

is small enough, stop the iteration; otherwise, go to step 5;
Step5. According to (5.6), compute

h™(t, x) = h(t, x) — (h{; i, x) — hTT(t, x)); (5.11)

Step6. Letm=m+ 1, go to step 2.

Remark. In the iteration,
h™! = h(t, x) — (Wt — AAh). (5.12)
To simplify the computation, if we assume
T=AA1, (5.13)
then
hi™* = ht, x) — (h{;™ = h") = h(t, x) — (Av™ — h{"). (5.14)
Therefore, we do not need to solve the direct problem for the one-way wave equations,
some computations are saved. Here we point out that (5.13) is not always true, bece
first, the domain ofA~! is not necessarily equal to the rangedfsecond, as pointed out

in Section 3, the large-time conditions used for compuﬂﬁtj} (either (3.9) or (3.12)) are
approximate conditions.
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6. NUMERICAL TESTS AND RESULTS

In [13, 28], several numerical tests are presented for the aases, 2. In this paper, we
construct the difference scheme for high-order approximations (arbity&oythe one-way
wave equations and use the iterative algorithm to getimproved inversion results. Nume
experiments are performed on several examples, and the computed results show th:
method is very effective for certain potential models.

We define

max; |v,i - 17,1(|

maximum error= (6.1)

max; |v|i]
Z],k ’vli - 17|J<’

average erroe= o
Ny N - max i |vg |

(6.2)

wherev is a given potential function and theare the results of the inversion method. Ir
all the examples, conditions (3.12) are used instead of (3.9). For simplicity, we use peri
boundary conditions ix.

ExampLE 1. The given potential (Fig. 3a) is

1 1+COS(1OX715)7T Sin(302711)n, X € gy 27 ze H’ 19 ’
v(X,2) = 2[ 12 ] 8 [10 10] [30 30] 6.3)

otherwise

o

It is a smooth function, and the variation along theirection is slower than that of the
z-direction. For such a “nice” function we can obtain remarkably good inversion resu
Here, we use three different approximatiams= 2, 5, 10) and show the errors for their
first 20 iterations in Fig. 2. In all the numerical experiments,[0, 3], z€ [0, 1], t €0, 4],
and the grid numbers in the z, andt directions are respectively = 40, N, =80, and
N; = 160, withAx =0.075 A =0.0125. Figure 3 shows the results foe 10.

From Fig. 2 we see that the inversion accuracyifer5, 10 is much better than for= 2.
Further, we see that for large the error of inversion decreases more quickly than for sm:

10 10
n=2: - %* n=2: -
. n=5: + * n=5: +
o n=10: ¥ - I I n=10: ¥
£10° * 10 ******* ...... .
o | Fpell £ tbkk ]
5. ¢¢¢¢*#**** ..... £ 5
210 FRFE¥EF 810
107 107
0 5 10 15 20 0 5 10 15 20
lteration Iteration

FIG. 2. The error of the inversions for different approximate one-way wave equations: left, the average e
right, the maximum error.
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50 50

a: Potential model v{x,h b: Result of 1st iteration

¢: Result of 2nd iteration d: Result of 25th iteration

FIG. 3. (a) the potential in example 1; (b—d) the inversion results for exampe=110): (b) the inversion
result of the first iteration; (c) the inversion result of the second iteration; (d) the inversion result of the 2!
iteration.

n during iterations. So we conclude that using higher order approximations for the one-\
wave equations improves inversion results.

To test the numerical stability of the inversion algorithm, Gaussian random noise v
added to the reflection responbét, x); see Fig. 4a. The ratio of noise to signal is
Inct, x|,/ I, x)||L, =14.4%. The noisy reconstruction is shown in Fig. 4b. The av.
erage error and the maximum error are 0.0197 and 0.0993, respectively. Comparing
the original potential function in Fig. 3a, we see that the inversion algorithm does not 1
apart even with large amounts of additive noise.

EXAMPLE 2. Let

C(lOX—lS)ﬂ 1~ (30z— 1) 3 27 11 19
V¥ (X, Z) = [14 cos™= 2] sin=g=2% - x € [ 35, 3. 2 € [ 55, 3] 6.4
0, otherwise
and
_Jvi(x,2), ifv <1,
U(X, Z) = { 1’ if v* > 1 (65)

Note thatv(x, z) is a platform-like function; see Fig. 5a.
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a: Resphonse with noise b: Reconstruction of potential

FIG. 4. (a) Noise-contaminated response; (b) reconstructed potential.

b: Result of 1stiteration

¢: Result of 2nd iteration d: Result of 20th iteration

FIG. 5. (a) the potential in Example 2; (b—d) the inversion results for Exampgte=210): (b) the inversion
result of the first iteration; (c) the inversion result of the second iteration; (d) the inversion result of the -
iteration.
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a: Potential model v{x,z)

s
R
llm.r;;j,zr

iy

— i
;; 05
3

0

0 40

40 0
¢: Result of 2nd iteration d: Result of 20th iteration

FIG. 6. (a) the potential in Example 3; (b—d) the inversion results for exampie=310): (b) the inversion
result of the first iteration; (c) the inversion result of the second iteration; (d) the inversion result of the 2
iteration.

The inversion results are shown in Fig. 5, wheke[0, 3], z€ [0, 1], andt € [0, 2.25], the
numbers of grid points afdy = 40, N, =40, andN; = 45, andAx = 0.075,A = 0.025, and
n=10. Itwas reported in [22] that for such a potential which drops off rapidly to zero in tt
deep part, the linearized reconstruction, based on the Born approximation, always hasa'
which goes to zero very slowly. This is due to the multiple reflection in the response whi
is considered as the primary reflection in the linearized inversion. From Fig. 5, we see
the reconstructed potential using the layer-stripping algorithm is nearly perfect. The cen
“plateau” is well reconstructed and no “tail” is found in the deep part. The average er
and the maximum error for the final reconstruction are 0.00264 and 0.0338, respective

ExAMPLE 3. The given potential (see Fig. 6a) is

16-3  x¢[0.3,1.5], z€[0.35, 0.65],

v(X,2) = ¢ FHA% xe[l1.52.7],2€[0.35,0.65], (6.7)

0, otherwise

For such a potential, we can get good inversion results, and the discontinuity al@adj-the
rection can be wellreconstructed; see Fig. 6. In computirg0, 3], z€ [0, 1], t € [0, 2.25],
Nx =40, N, =40, N; =45, andAx =0.075,A =0.025 n=10.
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¢: Result of 2nd iteration d: Result of 20th iteration

FIG. 7. (a) the potential in Example 4; (b—d) the inversion results for Exampgle=410): (b) the inversion
result of the first iteration; (c) the inversion result of the second iteration; (d) the inversion result of the -
iteration.

EXAMPLES 4 AND 5. For the last two examples, the given potentials are obtained
rotating the potential in Example 3 by <1&nd 30, respectively. See Fig. 7a and Fig. 8a
In both examples, the potentials are discontinuous along tirad x directions. The in-
version results are shown in Figs. 7 and 8, and the errors, comparing with that of
ample 3 can be seen in Fig. 9. Numerical experiments show that the inversion becc
more difficult when the slope becomes larger. Even for a slope-like potential with sn
angle, the inversion will be divergent after several iterations. But if we stop the ite
tion earlier, reasonably good results can be obtained. In computing for both exam
x€[0,3], z€[0, 1], t €[0, 2.33], Ny =30, N,=30, N; =35, Ax=0.1, A=0.033, and
n=10.

7. CONCLUSIONS

We have developed a method for solving the 2D potential inverse problem. By using
wave splitting technique, the ill-posed inverse problem for the higher dimensional w
equation is naturally regularized, so that it can be solved by a layer-stripping algorithm.
iterative method proposed in Section 5 remarkbly improves the inversion accuracy. F
the numerical experiments, we see that this method is very effective for potential mo



504 ZHANG AND ZHANG

0 20
230 0 Z30 0
a: Potential model v{x,z) b: Result of 1st iteration

0
Z30 0 230 0
¢: Result of 2nd iteration d: Result of 20th iteration

FIG. 8. (a) the potential in Example 5; (b—d) the inversion results for Exampghe=510): (b) the inversion
result of the first iteration; (c) the inversion result of the second iteration; (d) the inversion result of the 2
iteration.

whose variation along the reference spatial directioz,dé greater than that of lateral

directions. This method can also be generalized to solve the 3D case and other kinc
propagation inverse problems. For example, the coefficient inverse problem of the acot
wave equation, whose corresponding inversion formulation is given in [26], may be sol\

1 0

107 10
0 degree slope: - 0 degree slope:
i * 15 degree slope: + = * 15 degree slope: +
5 * g 30 degree slope: * <) * 30 degree slope: *
= + * % o *
@ 4 * ok % 5 o T *x
y + Hk ok ke ke x . kb L R,
§>10 2 L AR | é 107 T ekl ¥
o .. = . ++++++++++++++4_
e A R c | Tttt
| Tt S | el
10° 107
0 5 10 15 20 0 5 10 15 20
Iteration Iteration

FIG. 9. The error of the inversions for different slope-like potentialssidpe (Example 3),¢”; 15° slope
(Example 4), “+”; 30 slope (Example 5), “*.” Left, the average error; right, the maximum error.
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by this method. Concerning the case of nonimpulsive sources, an inversion method ¢
characteristic band method has been developed in [30, 14] for the 1D problems, whict
be generalized to the multidimensional cases.

APPENDIX: PROOF OF PROPOSITION 1

By the transformation =s/+/1 — s?, the left-hand side becomes

_2/«/13 /“/1533/00 1-— &2
1-&s £252 T Jo 1+(@1—¢g9t?

Let1—£2=re'?,r >0,0 [0, 2r) andq =r'/?t, then we have

\/1—552 Y2 oo gl
1_ = 53 U= 7oz dd
— £&%s T Jo 14+¢€%
1/2 ad®/?
_ X gen jim / _dz_
4 a—+oo [ 1+ Z2
iz ad 2
== €2 |im arctan2)
T a——+o0 7—0
r1/2 ) . _7z ' i — ad®/2
=—€® Jim |In +i-Arg——
i a—+00 z i +Z]|7-9

202 — /1 — £2,

This completes the proof.
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